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THE OCCURRENCE OF FINGERPRINT CHARACTERISTICS
AS A TWO-DIMENSIONAL PROCESS

Stanley L. Sclove
University of Illinois at Chicago Circle

ABSTRACT

The model for occurrence of fingerprint characteristics in terms
of multinomial trials on a grid of cells is extended to consider
dependence between the cells. The occurrence of the characteristics

is modelled as a two-dimensional Markov process.

KEY WORDS: Fingerprints; Identification; Criminalistics; Multinomial

model; Two-dimensional stochastic process; Markov process.
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THE OCCURRENCE OF FINGERPRINT CHARACTERISTICS
AS A TWO-DIMENSIONAL PROCESS

Stanley L. Sclove

University eof Illinois at Chicago Circle

1. INTRODUCTION

The individuality of a fingerprint is based on the pattern of occurrence

of the ridge-line details. These minutiae, called Galton [2] characteristics, are

of ten types: islands, bridges, spurs, dots, ridge endings, forks (bifurcations),
lakes trifurcations, double bifurcations, and deltas. (See [3] for diagrams and
detailed descriptions.) In [3] the estimation of fingerprint probabilities based

on Galton characteristics was treated according to the following model:

Assumption 1. A fingerprint is considered in terms of a grid of one millimeter qells.
Assumption 2. TFor each cell of the grid there are 13 possibilities: either the

cell is empty, or one of the following 12 possibilities has occurred: island, bridge,
spur, dot, ending ridge, fork, lake, trifurcation, double bifurcation, broken ridge
(two ridge endings), or some other multiple occurrence.

Assumption 3. There is statistical independence between cells.

Under this model the probability distribution for a given cell is the point

multinomial
7 g AR
| vhere, for 1 = 0,1,2,...,12, z, = 0 or 1 according as the i-th possibility occurs
l
or not, so 2z, + 2z, + ... + 2z, =1, Under Assumption 3--independence among cells--

0 f 12

the probability P of a given configuration of t cells is the product over cells,

t z Z 2
‘P .a I p Ocp lc..-p 12,c’ (1.1)
=u 0 i § 12
c=1
where, for 1 = 0,1,2,...,12, $is ® 1 or O according as the i-th possibility occurs
in the c-th cell or not.
i . -1-
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Thus the probability for a configuration with k. empty cells, k, cells

L

cells containing a delta,

0

containing an island, k2 cells containing a bridge, ..., klO

k., cells containing two ridge'endings, and k cells containing some other multiple

11 12

1
occurrence is

ko ol k

P (0 F iy 12
By By =By e
where, for i = 0,1,2,...,12, ; T 2=1Zic » the number of occurrences of possibility i

across the t cells. The estimates of the pi's (from [3]) are given in Table 1.

[INSERT TABLE 1 HERE.]

For example, consider the configuration of Figure 1. It has 43 cells, 37
of them empty, the other six being occupied by U4 ridge endings and 2 forks. The

estimated probability is

A

1] A37Ah - 2 37 L %
P = By Psby = .766°".0832 0382 —loglOP =Rl

[INSERT FIGURE 1 HERE. ]
The purpose of the present paper is to study the extent of departure from
Assumption 3 and to refine the model according to that departure. Accordingly,
the occurrence of fingerprint characteristics is modelled as a two-dimensional process
to take into account the dependence between cells.
Appendix A gives a data-analysis relating to dependence between cells.
It shows that the probability that a cell is occupied increases monotonically

with the number of neighbors occupied.
2. MODELLING DEPENDENCE AMONG CELLS

Let the cells be numbered in some fixed order, say, as one reads
English, starting with the top row and moving from left to right within each row.
Let Xc be a random vector giving the outcome in the c-th cell,

5 = (ZOc'zlc’ch""'le,c)’ c ? L5 ves sy b

— ———— - e
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Then
F= P(Xl=xl)P(X2=x2|X1=xl)P(X3=x3|X2=x2,Xl=xl)
;e (2.1)

-+ P(X =x |x

T R

Under Assumption 3, independence among cells, expression (2.1) simplifies to

P = P(Xl=xl)P(X2=x2).L.P(Xt=x e

which is the same as (1.1) since

s i | %12

P(X=x) = P[@O,Zl,...,Zle)=(zo,zl,...,z12)] = Py Py - Py

As a step toward modelling dependence, we introduce

Assumption 3'. The outcome in the c-th cell depends upon the outcomes in the other

cells only through the outcomes in the adjacent cells.

Due to the fact that the probability (2.1) forces one to use a linear ordering
of the cells, one must write things in terms of the four preceding adjacent cells
rather than all eight adjacent cells. More precisely, under Assumption 3', the
conditional probability P(Xc=xc|Xc_l,Xc_2,...,Xl) will not depend upon all of
Xc—l’ Xc—2’ “o s Xl but only upon four of these variables, namely, those correspon-
ding %6 the cell to the left (west) of cell ¢, the cell above (north of) cell c,
the cell just northwest of cell c, and the cell just northeast of cell c. [If the
configuration were rectangular and indexed as (i,j), then the four cells upon which
the outcome in cell (i,j) would depend would be cells (i,j-1), (i-1,j-1), (i-1,3),
and (i-1,j+1).] B 7 Wc denotes the matrix whose columns are these four neighbors
of Xc, then Assumption 3' is

P(xc=xc|xc_1,x ceesXy) = P(xc=xclwc) ; (2.2)

e=2’
Assumption 3' may be viewed as an assumption that the process is a Markov process;
see Appendix B.

2.1. Data Analysis

Sets of 5 cells were examined to study the dependence of Xc on its four

X X X

preceding neighbors. According to the model, these sets were of the form y

where y denotes the dependent cell and the x's its four preceding neighbors.
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=
For any such set s, let the variable P =1 or O according as the fifth ("yt)
cell in the s-th set is occupied or not, and let As be the number of preceding
adjacent cells ("x" cells) which are occupied; A, is between O and L. Table 2
gives, for each value of A, the proportion of* B's that are equal to 1. We say
(INSERT TABLE 2 HERE. ]
that a cell has one adjacency for each of the four precgding adjoining cells

which is occupied. We shall refer to the variable A as the number of adjacencies.

The probability of occupancy increases monotonically with the number of adjacencies.
Such absolute consistency was not expected, firstly because perfect consistency seems
so rare in data analyses and secondly because it was thought that occurrences in most
of the four adjacent cells might crowd out occurrence in the fifth cell.

Combining (2.2) with the multinomial gives
12
zZ,
P(Xc—xc|Wé) = izo [p, (W )11, (2.3)

where z = ( ). The model we shall use for pi(wc) is that it depends

Zge 295t es2yp
on Wc only through the number of cells occupied. That is,

pi(wc) = Pi(a):
where
A a(WC)
is the number of adjacencies for céll ¢ -- the number of occupied cells among

the four cells preceding and adjacent to cell c; the quantity a is either

0,1,2,3 or 4. We now have

€ 12 zic
PEE Sl [pi(a )] . (2.4)
e=11i=0 ¢
Some adjustments are necessary for border cells -- cells in the first row, first column,

or last column. See the next section.
Let E be the event that a given cell is occupied. We shall assume that
the probability of Possibility i in any given cell, which was P, in the model of [3],

is
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Assumption k: pi(a) = piP(ElA=a)/P(E), 6 A D R -

Thus
12
po(a) =1~z pi(a)
i=1 t
2
=1 - [P(E|A=a)/P(E)] 2 p;
i=1

Note that, for i = 1,2;...,12, pi/P(E) is simply the conditional probability of
occurrence of possibility i, given that the cell is occupied, so that the effect

of Assumption 4 is simply to allocate P(E|A=a) to the twelve different possibilities
in the same way, regardless of the value of A.

This gives

% 312 244
P = I T [piP(E|Ac=ac)/a\E)]
c=11i=0
L k.(a) 12 k —(k_+k.+...+k__.) L m
i 2
= (1 pa)® 101 p Y1E@E 1 21 p(E|a=a) ],
- 1 1
a=0 =] a=1
where, for a = 0,1,2,3,k4,

ko(a) number of empty cells with exactly a adjacencies,
for d = 1,25 auyl2y

ki = number of cells containing possibility i
(as above), and for a = 0,1,2,3,4,

m = number of occupied cells with exactly a adjacencies.

2.2. Border Cells

Cells at the border, not being touched by the full complement of four
preceding adjacent cells, require some special treatment. One could take the results
in border cells as given and take the probabilities for the other cells conditionally
on the outcomes in the border cells, but this would result in considerable reduction

in the effective sample size. (E.g., 18 of the 43 cells in Figure 1 are border cells.)

e ———— e T I —
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We wish to use such information as is present. I.e., we shall make use of the
fact that some but not all 4 preceding adjacent cells are represented. E.g.,

if there are 3 adjacent cells and 2 are occupied, then we know that if the L cells
were present, then 2, 3 or U of them would bé occupied: we need to know
P(E|2<A<k), where E is the event that the given cell is occupied. In general,

we need to know P(E|al§A§az), O2a,<a,<h. We have

1
P(E]algAgae) = P(E and a,<A<a,)/P(a,2A<a,)
a2 6.2
= 1I° P(E and A=a) /I P(A=a)
a=al a=a.l

- 12 P(E|A=a)P(a=a) / 22 P(A=a)

a—al a:al

For this we need the marginal distribution of A, given in Table 3.
[TABLE 3]

2.3. Example

Let us now apply the formula to the configuration of Figure 1. Recall from
the Introduction that for this configuration the method of [3] gave -logloP = 11
To make the adjustment for border cells, pi(a) = P(Possibility i|A=a)

is replaced by the relevant probability of the fcrm P(Possibility i|a,§A§p | 8
i

2
We insert the relevant cell probabilities on Figure 2, a copy of Figure 1.
For this we need the following numbers, obtained from the tables:

for ending ridges:--

.356 P(E|A=0) = .356(.199) = .0708
| .356 P(E|0<A<2) = .356(.261) = .0929
: for forks:--
| .163 P(E[A=0) = .163(.199) = .032k
.163 P(E|A=1) = .163(.291) = .OuTL
i
o P T - e 2 s T e e =i oA
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for empty cells:--

1 - P(E|O<A<k) = 1 - .280 = .T20

1~ PR(Bj0A<3) = 1 - .213 = .72¢

1 - P(EJo<A<l) = 1 - .239 = .761

1-P(E|1<A<2) = 1 - .309 = .691

1 - P(E|1<A<3) = 1 - .322 = .678
[FIGURE 2]

The estimated probability is

p = .03kt ouit 07083 0029 . 6671, 6781, 691770912, 720 . 727°.7612.801° ;

the negative log of this is —logloﬁ = 12.5. Compare this with the figure of
11.4 given by the approximation based on an assumption of independence between
cells. The difference in logarithms is 1.1; the ratio of the two estimates is
thus 12.6. This difference is unimportant since we are interested only in order
of magnitude. Note further that the estimatc based on independence is a larger
probability, i.e., it is conservative, in the sense of giving the suspect the
benefit of the doubt. In general, independence gives too much weight (too low
a probability) to configurations with a lot of clustering of occurrences. In
the configuration of Figure 1 there is some but not a great deal of clustering.

3, DISCUSSION

3.1. Upper Bounds

Often we are concerned primarily with upper bounds, as these are conservative.
i.e., they err in favor of the suspect. An upper bound on the probability that is
highly conservative within the context of the present model can be obtained by
multiplying the relative frequency of each occurrence by .71llk, the occupancy
probability for L4 adjacencies, and replacing the probabilities for empty cells by
.801, the probability a cell is empty given that all its neighbors are empty.

This gives the upper bound

o .«x-‘l%qtj_s‘;'-. R TR B L ww - L e
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S " .k K_+...+k
F = .800 ° P, L... p12 Y2(.7ak/.23u) 1 ke
kg S
= (.801/.766) “(.714/.234) 1 P.
k K. +...+k . .
= 1.06 °3.05 b 2 - i

where P is the estimate based on independence. The decrease in information

A

- B | = = ) =
is at most loglOP 1og10P kologlol.06 + (kl+...+k12,loglo3.05

) = 0.0253(t-c) + 0.484c, where c = k. +...+k

0.0253ko-+ o.hsh(kl+...+k 1 12

2
is the number of occupied cells, t = ko + ¢ is the total number of cells (and
t-c = ko is the number of empty cells). For example, for the configuration of
Figure 1, we have 1og10§'— log10§ = 0.0253(37) + 0.484(6) = 3.84, so the ratio
of P to § is about T7,000. For the estimate based on dependence (denote it here
.by %), we have loglo§.- loglO§ = 15.2 - 12.5 = 2.7, corresponding to a ratio
of about 500.

3.2. Pattern Area vs. Non-pattern Area

The pattern area of a full print is defined as the central area, delineated
in terms of the positions on the ridge lines where they change concavity. The
non-pattern area is the border area, outside of the pattern area. In [3] it was
mentioned that the density of occurrences in the non-pattern area is only about
60% as great as in the pattern area. The model of the present paper provides
an effective means of dealing with this inhomogeneity. Among the reasons for
favoring the model of this paper to a model based on the pattern-non-pattern
dichotomy are the following: (i) the definition of pattern area is not entirely
precise, and even if it were, crime-scene partial prints do not always permit
identification of the pattern and non-pattcrn area; (ii) the density of occurrences
is not a function of the pattern/non-pattern dichotomy, rather it decreases as
the distance from the core increases, with a possible increase in density around
deltas.

3.3. Contrcl for Variation in Finger Size

This study and [3] are based on the use of one millimeter squares for all

o b PEERAG AN D e 3y e SRR




prints. A print-cependent wetric might be more appropriate; e.g., the cell csize
could be taken equal to, say, the average distance to ziross six ridge lines.
This would be comparatively di™'icult :o scrk with. Use of the model of the
present paper, conditioning on occurrences i; adjacent cells, provides at least
a partial control for variation in density of occurrences associated with

variation in finger sizes.

APPENDIX A Data Analysis of Dependence between Cells

Square blocks of 9 cells, 3 cells by 3 cells, were examined to determine
the extent of inter-cell dependence. The data set of [3] yielded 845 separate
such blocks of cells. For i =1, 2, ... , 845 blocks, let the variable yi =
1 or O according as the center cell of th i-th block is occupied or not, and let
X be the number of adjacent cells which are occupied; X; is between O and 8.
Table 5 gives the cross-tabulation of y and x. Table 6 gives, for each value of x,
the proportion of y's that are equal to 1, i.e., the proportion of center cells
which are occupied.

[INSERT TABLES 5 AND 6 HERE. ]

The probability of occupancy increases monotonically with x. Such absolute
consistency was not expected, firstly because it seems so rare in data analyses
and secondly because it was thought that occurrences in most of the adjacent cells
might crowd out occurrence in the center cell.

Table T, based on Table.S, gives observed and expected values of the number
of blocks with center cells occupied.

[TABLE 7]

The value of the chi-square statistic for testing independence based on
Table 7 is 18.77 (6d.f., P<.005). The decomposition of this overall value
based on the value 0.14 of the correlation coefficient between x and y is given
in Table 8.

[TABLE 8]

A i 2 8t T
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APPENDIX B Some Remarks on Two-Dimeusional Processes

The idea of order of a two-dimensional process that we use is essentially that
discussed by P.K. Bhattacharya [2]. Consider a stochastic process with a two-dimensional
parameter (s,t). In order to calculate probabilities we shall need to define a
linear ordering on {(s,t)}. For simplicity assume the array {(s,t)} is rectangular:
8=1, 2, .o0a 8, B=1,2 ..., T. We shall use the ordering (1,1), (1,2), .-, (1,T),
(2,1), (2,2)y «.., (S,T), which might be called "English-language ordering."

[Bhattacharya uses the "lexicographic ordering," (1,1), (2,1), ..., (S,1), (1,2),
(2,2), ..., (S,T).] We shall say that a two-dimensional process is of order r

if the conditional distribution of X given all the random variables preceding

St
it in the ordering, depends only upon those random variables Xst such that

12 ¢ 2

(s - s')2 + (t -t < r°. (In some problems it may prove meaningful to use a

metric different from Euclidean distance.) Thus in a first-order process, Xst depends

2

it
upon Xs—l,t and Xs,t-l' In a process of order 2 A Xst depends upon the four
variables Xs-l,t—l’ Xs—l,t’ Xs-l,t+1’ and Xs,t-l; this is the order of process
employed in the present paper.
APPENDIX C Infinitely Divisible Random Vectors

Let Yc =Y Y ) be the observation in the c-th cell, where,

o aileie o YlO,c
for v=1, 2, ..., 10 Galton characteristics, ch = number of occurrences of the
v-th characteristic in the c-th cell. The family of random variables {Yc, ot [0 PERNP -
cells} may be considered as a stochastic process in the plane, a multivariate point
process. It is reasonable to model this process as an infinitely divisible process.
Such processes have been studied under AFOSR Grant T6-3050 (see [L4]) and are being
studied under AFOSR Grant 77-345L4. Now underway is a study of the occurrences of
fingerprint characteristics as a multivariate Poisson process, a special case of

an infinitely divisible process. Upon completion of that study, infinitely divisible

processes will be further studied and will be applied to other pattern recognition

problems and to other phenomena, as outlined in the proposal for AFOSR Grant T7-3u5k.

B e simatil
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1. Estimates of Prchabilities and
Relative Frequencies of the Possibilities

Estimated probability, Estimated

i B, Eelatixe freguency,
B;/(1-By) = p,/.23k
0 Empty cell .766
1 Island JOLTT .0756
2 Bridge <0122 .0521
3 Spur .00TU5S .0318
L Dot .0151 .06kL5
5 Ending ridge .0832 .356
6 Fork .0382 .163
T Lake .006k40 .027h
8 Trifurcation  .000582 .002k9
9 Double bifur-
cation .001k0 .00598
10 Delta .00198 g .008L6
11 Broken ridge .0139 .059L
12 Other multiple
occurrence .0355 <152
1.0 1.0

R




2. Number of Adjacencies and Probability of Occupancy

Number of adjacencies 0 0 2 3 L

Probability of occupancy <199 s agre L Sgea - o0 - Ll




3. Distribution of A,

the Number of Adjacenties

P(A=a) .391  .296 .214 .084 .015

N
1




o S
L, Estimates for Border Cells:
%
Estimates of Probability of Occupancy,

given Partial Information about Adjacent Cells

P(E]alfﬁﬁgz)

1 2

0 1 2 3 b
0 .199 .239 .261 213 .280
1 .291 .309 .322 .331
2 <333 .352 -369
3 : .koo Lkt
4 .71k

S st




5. Cross-Tabulation of
Occupancy of lenter Cell

and Number of Adjacent Cells Occupied

X N

0 i Total
0 152 28 180
& 170 Ls 215
2 163 Ls 208
3 97 29 126
L LL 23 67
5 23 13 36
6 - .
i 0 0
8 1

656 189 845 blocks of cells
y =1 if given (center) cell is occupied

0 if it is empty

number of adjacencies (number of adjacent cells

»
n

occupied)




1 e

6. Probability of Occ 'pancy as a Function

of Number of Adjace .t Cells Occupied

x: 0 1 2 B N 5 6 T 8  Total
Frequency: 180 215 208 126 67 36 12 0 1 8L5
Percent of blocks

with center cells .
occupied: 15.6 20.9 21.6 23.0 3.3 36.1 Ul.7 ~-=- 200 22.k

x = number of adjacencies

10




T. Observed and Expected Values

of Number of Blocks with Center Cells Occupied

Observed (Expected)

x y
0 i3 Total
0 152 (139.7) 28 (L0.3) 180
1 170 (166.9) Ls (48.1) 215
2 163 (161.5) Ls (L46.5) 208
3 97 (97.8) 29 (28.2) 126
L L4 (52.0) 23 (15.0) 67
5 23 (27.9) 13 { 8.1) 36
6 or more T (N0 1) 6 ( 2.9) 13
Total 656 189 8Ls
T e i ———— -
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8.

according to Correlation petween x and y

o o

Decomposition of Chi-Square

Source of d.f. Value of

variation chi-square

Overall 6 18.77 (P<.005)

nr i 16.65 (P<.005)

Residual 5 2.12 (.80<p<.85)
\
|




P o=

-
N
w
»
(%]
(<))

A 0 0 0 0 0 0
B E 0 0 o E 0
c 0 0 F 0 0 0
D 0 0 0 0 0 0
E 0 0 0 E 0 0
F 0 0 0 0 F 0
G 0 E o o o 0
H 0

Figure 1. Configuration of 43 cells with & ending ridges
and 2 forks. O = empty cell, E = eading ridge,
F = fork.




A J20 727 727 .27 127 T2

B .0929 .709  .801  .801  .0708  .691 1
- .678 JE08 - J032h 667 .709 .691

D .691 .709 .709 .709 .801 761

E .691 .801 .801 .0708 .709 761

F .691 .801 .709 .709  .0u7h 691

G .691 <0708 - JT09 .709 .709 - .691

H .691

Figure 2. Cell probabilities for configuration

of Figure 1.
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